Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Int J Pharm ; 636: 122790, 2023 Apr 05.
Article in English | MEDLINE | ID: covidwho-2284953

ABSTRACT

This paper describes the development of a coating for cotton and polypropylene (PP) fabrics based on a polymeric matrix embedded with cuprous oxide nanoparticles (Cu2O@SDS NPs) in order to inactivate SARS-CoV-2 and manufactured by a simple process using a dip-assisted layer-by-layer technology, at low curing temperature and without the need for expensive equipment, capable of achieving disinfection rates of up to 99%. The polymeric bilayer coating makes the surface of the fabrics hydrophilic, enabling the transportation of the virus-infected droplets to achieve the rapid inactivation of SARS-CoV-2 by contact with the Cu2O@SDS NPs incorporated in the coated fabrics.


Subject(s)
COVID-19 , Nanoparticles , Humans , SARS-CoV-2 , COVID-19/prevention & control , Textiles , Polymers
2.
Future Med Chem ; 14(21): 1561-1581, 2022 11.
Article in English | MEDLINE | ID: covidwho-2284388

ABSTRACT

Advancements in nanotechnology have resulted in the introduction of several nonviral delivery vectors for the nontoxic, efficient delivery of encapsulated mRNA-based vaccines. Lipid- and polymer-based nanoparticles (NP) have proven to be the most potent delivery systems, providing increased delivery efficiency and protection of mRNA molecules from degradation. Here, the authors provide an overview of the recent studies carried out using lipid NPs and their functionalized forms, polymeric and lipid-polymer hybrid nanocarriers utilized mainly for the encapsulation of mRNAs for gene and immune therapeutic applications. A microfluidic system as a prevalent methodology for the preparation of NPs with continuous flow enables NP size tuning, rapid mixing and production reproducibility. Continuous-flow microfluidic devices for lipid and polymeric encapsulated RNA NP production are specifically reviewed.


Subject(s)
Lab-On-A-Chip Devices , Nanoparticles , RNA, Messenger , Reproducibility of Results , Polymers , Lipids
3.
Front Cardiovasc Med ; 9: 992686, 2022.
Article in English | MEDLINE | ID: covidwho-2055001

ABSTRACT

The ongoing coronavirus disease 2019 pandemic left us with thousands of patients suffering from neurological, cardiovascular, and psychiatric disorders named post-acute sequelae of COVID-19 or just long-Covid. In parallel, the vaccination campaigns against SARS-CoV-2 spike protein saved millions of lives worldwide but long-Covid symptoms also appeared rarely following vaccination with a strong overlap to the "canonical" long-Covid symptoms. A therapeutic strategy targeting both, post-VAC and post-SARS-CoV-2 long-Covid symptoms is warranted since exposure to the S-protein either by vaccination or SARS-CoV-2 infection may trigger identical immuno-inflammatory cascades resulting in long-Covid symptoms.

4.
Advanced Nanobiomed Research ; 2(2):17, 2022.
Article in English | Web of Science | ID: covidwho-1813459

ABSTRACT

Lipid nanoparticles have attracted significant interests in the last two decades, and have achieved tremendous clinical success since the first clinical approval of Doxil in 1995. At the same time, lipid nanoparticles have also demonstrated enormous potential in delivering nucleic acid drugs as evidenced by the approval of two RNA therapies and mRNA COVID-19 vaccines. In this review, an overview on different classes of lipid nanoparticles, including liposomes, solid lipid nanoparticles, and nanostructured lipid carriers, is first provided, followed by the introduction of their preparation methods. Then the characterizations of lipid nanoparticles are briefly reviewed and their applications in encapsulating and delivering hydrophobic drugs, hydrophilic drugs, and RNAs are highlighted. Finally, various applications of lipid nanoparticles for overcoming different delivery challenges, including crossing the blood-brain barrier, targeted delivery, and various routes of administration, are summarized. Lipid nanoparticles as drug delivery systems offer many attractive benefits such as great biocompatibility, ease of preparation, feasibility of scale-up, nontoxicity, and targeted delivery, while current challenges in drug delivery warrant future studies about structure-function correlations, large-scale production, and targeted delivery to realize the full potential of lipid nanoparticles for wider clinical and pharmaceutical applications in future.

5.
Molecules ; 27(1)2021 Dec 28.
Article in English | MEDLINE | ID: covidwho-1580565

ABSTRACT

Baricitinib (BTB) is an orally administered Janus kinase inhibitor, therapeutically used for the treatment of rheumatoid arthritis. Recently it has also been approved for the treatment of COVID-19 infection. In this study, four different BTB-loaded lipids (stearin)-polymer (Poly(d,l-lactide-co-glycolide)) hybrid nanoparticles (B-PLN1 to B-PLN4) were prepared by the single-step nanoprecipitation method. Next, they were characterised in terms of physicochemical properties such as particle size, zeta potential (ζP), polydispersity index (PDI), entrapment efficiency (EE) and drug loading (DL). Based on preliminary evaluation, the B-PLN4 was regarded as the optimised formulation with particle size (272 ± 7.6 nm), PDI (0.225), ζP (-36.5 ± 3.1 mV), %EE (71.6 ± 1.5%) and %DL (2.87 ± 0.42%). This formulation (B-PLN4) was further assessed concerning morphology, in vitro release, and in vivo pharmacokinetic studies in rats. The in vitro release profile exhibited a sustained release pattern well-fitted by the Korsmeyer-Peppas kinetic model (R2 = 0.879). The in vivo pharmacokinetic data showed an enhancement (2.92 times more) in bioavailability in comparison to the normal suspension of pure BTB. These data concluded that the formulated lipid-polymer hybrid nanoparticles could be a promising drug delivery option to enhance the bioavailability of BTB. Overall, this study provides a scientific basis for future studies on the entrapment efficiency of lipid-polymer hybrid systems as promising carriers for overcoming pharmacokinetic limitations.


Subject(s)
Azetidines/pharmacokinetics , Drug Carriers/chemistry , Drug Liberation , Liposomes/chemistry , Nanoparticles/chemistry , Polymers/chemistry , Purines/pharmacokinetics , Pyrazoles/pharmacokinetics , Sulfonamides/pharmacokinetics , Administration, Oral , Animals , Azetidines/administration & dosage , Azetidines/chemistry , Biological Availability , Male , Purines/administration & dosage , Purines/chemistry , Pyrazoles/administration & dosage , Pyrazoles/chemistry , Rats , Rats, Wistar , Sulfonamides/administration & dosage , Sulfonamides/chemistry
6.
Biosensors (Basel) ; 11(7)2021 Jul 01.
Article in English | MEDLINE | ID: covidwho-1323109

ABSTRACT

The feasibility of using Superparamagnetic Iron Oxide Nanoparticles (SPIONs) encapsulated by lipid-polymer nanoparticles as labels in lateral flow immunoassays (LFIA) was studied. First, nanoparticles were synthesized with average diameters between 4 and 7 (nm) through precipitation in W/O microemulsion and further encapsulated using lipid-polymer nanoparticles. Systems formulated were characterized in terms of size and shape by DLS (Nanozetasizer from Malvern) and TEM. After encapsulation, the average size was around (≈20 and 50 nm). These controlled size agglomerates were tested as labels with a model system based on the biotin-neutravidin interaction. For this purpose, the encapsulated nanoparticles were conjugated to neutravidin using the carbodiimide chemistry, and the LFIA was carried out with a biotin test line. The encapsulated SPIONs showed that they could be promising candidates as labels in LFIA test. They would be useful for immunomagnetic separations, that could improve the limits of detection by means of preconcentration.


Subject(s)
Immunoassay , Magnetic Iron Oxide Nanoparticles , Biosensing Techniques , Lipids , Polymers/chemistry
7.
Nanomedicine ; 35: 102338, 2021 07.
Article in English | MEDLINE | ID: covidwho-921611

ABSTRACT

DNA vaccine is an attractive immune platform for the prevention and treatment of infectious diseases, but existing disadvantages limit its use in preclinical and clinical assays, such as weak immunogenicity and short half-life. Here, we reported a novel liposome-polymer hybrid nanoparticles (pSFV-MEG/LNPs) consisting of a biodegradable core (mPEG-PLGA) and a hydrophilic shell (lecithin/PEG-DSPE-Mal 2000) for delivering a multi-epitope self-replication DNA vaccine (pSFV-MEG). The pSFV-MEG/LNPs with optimal particle size (161.61 ±â€¯15.63 nm) and high encapsulation efficiency (87.60 ±â€¯8.73%) induced a strong humoral (3.22-fold) and cellular immune responses (1.60-fold) compared to PBS. Besides, the humoral and cellular immune responses of pSFV-MEG/LNPs were 1.58- and 1.05-fold than that of pSFV-MEG. All results confirmed that LNPs was a very promising tool to enhance the humoral and cellular immune responses of pSFV-MEG. In addition, the rational design and delivery platform can be used for the development of DNA vaccines for other infectious diseases.


Subject(s)
DNA Replication , Epitopes , Immunity, Cellular/drug effects , Immunity, Humoral/drug effects , Nanoparticles/therapeutic use , Vaccines, DNA , Animals , Epitopes/genetics , Epitopes/immunology , Liposomes/immunology , Liposomes/pharmacology , Mice , Mice, Inbred BALB C , Vaccines, DNA/genetics , Vaccines, DNA/immunology , Vaccines, DNA/pharmacology
8.
Cells ; 9(9)2020 09 05.
Article in English | MEDLINE | ID: covidwho-750713

ABSTRACT

Hybrid nanoparticles from lipidic and polymeric components were assembled to serve as vehicles for the transfection of messenger RNA (mRNA) using different portions of the cationic lipid DOTAP (1,2-Dioleoyl-3-trimethylammonium-propane) and the cationic biopolymer protamine as model systems. Two different sequential assembly approaches in comparison with a direct single-step protocol were applied, and molecular organization in correlation with biological activity of the resulting nanoparticle systems was investigated. Differences in the structure of the nanoparticles were revealed by thorough physicochemical characterization including small angle neutron scattering (SANS), small angle X-ray scattering (SAXS), and cryogenic transmission electron microscopy (cryo-TEM). All hybrid systems, combining lipid and polymer, displayed significantly increased transfection in comparison to lipid/mRNA and polymer/mRNA particles alone. For the hybrid nanoparticles, characteristic differences regarding the internal organization, release characteristics, and activity were determined depending on the assembly route. The systems with the highest transfection efficacy were characterized by a heterogenous internal organization, accompanied by facilitated release. Such a system could be best obtained by the single step protocol, starting with a lipid and polymer mixture for nanoparticle formation.


Subject(s)
Biopolymers/chemistry , Lipids/chemistry , Nanoparticles/chemistry , RNA, Messenger/metabolism , Transfection/methods , Animals , Cell Line , Fatty Acids, Monounsaturated/chemistry , Female , Heparin/chemistry , Humans , Mice , Mice, Inbred BALB C , Optical Imaging , Particle Size , Quaternary Ammonium Compounds/chemistry , RNA, Messenger/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL